Surface Acoustic Wave Filters gives the fundamental principles and device design techniques for surface acoustic wave filters. It covers the devices in widespread use today: bandpass and pulse compression filters, correlators and non-linear convolvers and
Surface Acoustic Wave Filters gives the fundamental principles and device design techniques for surface acoustic wave filters. It covers the devices in widespread use today: bandpass and pulse compression filters, correlators and non-linear convolvers and resonators. The newest technologies for low bandpass filters are fully covered such as unidirectional transducers, resonators in impedance element filters, resonators in double-mode surface acoustic wave filters and transverse-coupled resonators using waveguides. The book covers the theory of acoustic wave physics, the piezoelectric effect, electrostatics at a surface, effective permittivity, piezoelectric SAW excitation and reception, and the SAW element factor. These are the main requirements for developing quasi-static theory, which gives a basis for the non-reflective transducers in transversal bandpass filters and interdigital pulse compression filters. It is also needed for the reflective transducers used in the newer devices. - A thorough revision of a classic on surface acoustic wave filters first published in 1985 and still in print- Uniquely combines easy-to-understand principles with practical design techniques for all the devices in widespread use today- Complete coverage of all the latest devices which are key to mobile phones, TVs and radar systems- Includes a new foreword by Sir Eric Albert Ash
Our site uses cookies and similar technologies to offer you a better experience. We use analytical cookies (our own and third party) to understand and improve your browsing experience, and advertising cookies (our own and third party) to send you advertisements in line with your preferences. To modify or opt-out of the use of some or all of our cookies, please go to “Manage Cookies” or view our Cookie Policy to find out more. By clicking “Accept all” you consent to the use of these cookies.