Introduction to the Theory of Optimization in Euclidean Space is intended to provide students with a robust introduction to optimization in Euclidean space, demonstrating the theoretical aspects of the subject whilst also providing clear proofs and applications.
Students are taken progressively through the development of the proofs, where they have the occasion to practice tools of differentiation (Chain rule, Taylor formula) for functions of several variables in abstract situations.
Throughout this book, students will learn the necessity of referring to important results established in advanced Algebra and Analysis courses.
Features
Rigorous and practical, offering proofs and applications of theorems
Suitable as a textbook for advanced undergraduate students on mathematics or economics courses, or as reference for graduate-level readers
Introduces complex principles in a clear, illustrative fashion
Our site uses cookies and similar technologies to offer you a better experience. We use analytical cookies (our own and third party) to understand and improve your browsing experience, and advertising cookies (our own and third party) to send you advertisements in line with your preferences. To modify or opt-out of the use of some or all of our cookies, please go to “Manage Cookies” or view our Cookie Policy to find out more. By clicking “Accept all” you consent to the use of these cookies.