Handbook of Truly Concurrent Process Algebra provides readers with a detailed and in-depth explanation of the algebra used for concurrent computing. This complete handbook is divided into five Parts: Algebraic Theory for Reversible Computing, Probabilisti
Handbook of Truly Concurrent Process Algebra provides readers with a detailed and in-depth explanation of the algebra used for concurrent computing. This complete handbook is divided into five Parts: Algebraic Theory for Reversible Computing, Probabilistic Process Algebra for True Concurrency, Actors - A Process Algebra-Based Approach, Secure Process Algebra, and Verification of Patterns. The author demonstrates actor models which are captured using the following characteristics: Concurrency, Asynchrony, Uniqueness, Concentration, Communication Dependency, Abstraction, and Persistence. Truly concurrent process algebras are generalizations of the corresponding traditional process algebras. Handbook of Truly Concurrent Process Algebra introduces several advanced extensions and applications of truly concurrent process algebras. Part 1: Algebraic Theory for Reversible Computing provides readers with all aspects of algebraic theory for reversible computing, including the basis of semantics, calculi for reversible computing, and axiomatization for reversible computing. Part 2: Probabilistic Process Algebra for True Concurrency provides readers with all aspects of probabilistic process algebra for true concurrency, including the basis of semantics, calculi for probabilistic computing, axiomatization for probabilistic computing, as well as mobile calculi for probabilistic computing. Part 3: Actors - A Process Algebra-Based Approach bridges the two concurrent models, process algebra and actors, by capturing the actor model in the following characteristics: Concurrency, Asynchrony, Uniqueness, Concentration, Communication Dependency, Abstraction, and Persistence. Part 4: Secure Process Algebra demonstrates the advantages of process algebra in verifying security protocols it has a firmly theoretic foundation and rich expressive powers to describe security protocols. Part 5: Verification of Patterns formalizes software patterns according to the categories of the patterns and verifies the correctness of patterns based on truly concurrent process algebra. Every pattern is detailed according to a regular format to be understood and utilized easily, which includes introduction to a pattern and its verifications. Patterns of the vertical domains are also provided, including the domains of networked objects and resource management. To help readers develop and implement the software patterns scientifically, the pattern languages are also presented. - Presents all aspects of full algebraic reversible computing, including the basis of semantics, calculi for full reversible computing, and axiomatization for full reversible computing- Introduces algebraic properties and laws for probabilistic computing, one of the foundational concepts of Computer Science- Presents the calculi for probabilistic computing, including the basis of semantics and calculi for reversible computing
Our site uses cookies and similar technologies to offer you a better experience. We use analytical cookies (our own and third party) to understand and improve your browsing experience, and advertising cookies (our own and third party) to send you advertisements in line with your preferences. To modify or opt-out of the use of some or all of our cookies, please go to “Manage Cookies” or view our Cookie Policy to find out more. By clicking “Accept all” you consent to the use of these cookies.