Presenting a complementary perspective to standard books on algorithms, A Guide to Algorithm Design: Paradigms, Methods, and Complexity Analysis provides a roadmap for readers to determine the difficulty of an algorithmic problem by finding an optimal solution or proving complexity results. It gives a practical treatment of algorithmic complexity and guides readers in solving algorithmic problems.
Divided into three parts, the book offers a comprehensive set of problems with solutions as well as in-depth case studies that demonstrate how to assess the complexity of a new problem.
Part I helps readers understand the main design principles and design efficient algorithms.
Part II covers polynomial reductions from NP-complete problems and approaches that go beyond NP-completeness.
Part III supplies readers with tools and techniques to evaluate problem complexity, including how to determine which instances are polynomial and which are NP-hard.
Drawing on the authors’ classroom-tested material, this text takes readers step by step through the concepts and methods for analyzing algorithmic complexity. Through many problems and detailed examples, readers can investigate polynomial-time algorithms and NP-completeness and beyond.
Our site uses cookies and similar technologies to offer you a better experience. We use analytical cookies (our own and third party) to understand and improve your browsing experience, and advertising cookies (our own and third party) to send you advertisements in line with your preferences. To modify or opt-out of the use of some or all of our cookies, please go to “Manage Cookies” or view our Cookie Policy to find out more. By clicking “Accept all” you consent to the use of these cookies.