This book covers the latest problems of modern mathematical methods for three-dimensional problems of diffraction by arbitrary conducting screens. This comprehensive study provides an introduction to methods of constructing generalized solutions, elements of potential theory, and other underlying mathematical tools. The problem settings, which turn out to be extremely effective, differ significantly from the known approaches and are based on the original concept of vector spaces ''produced'' by Maxwell equations. The formalism of pseudodifferential operators enables to prove uniqueness theorems and the Fredholm property for all problems studied. Readers will gain essential insight into the state-of-the-art technique of investigating three-dimensional problems for closed and unclosed screens based on systems of pseudodifferential equations. A detailed treatment of the properties of their kernels, in particular degenerated, is included. Special attention is given to the study of smoothness of generalized solutions and properties of traces.
Our site uses cookies and similar technologies to offer you a better experience. We use analytical cookies (our own and third party) to understand and improve your browsing experience, and advertising cookies (our own and third party) to send you advertisements in line with your preferences. To modify or opt-out of the use of some or all of our cookies, please go to “Manage Cookies” or view our Cookie Policy to find out more. By clicking “Accept all” you consent to the use of these cookies.