Dynamic fracture in solids has attracted much attention for over a century from engineers as well as physicists due both to its technological interest and to inherent scientific curiosity. Rapidly applied loads are encountered in a number of technical app
Dynamic fracture in solids has attracted much attention for over a century from engineers as well as physicists due both to its technological interest and to inherent scientific curiosity. Rapidly applied loads are encountered in a number of technical applications. In some cases such loads might be applied deliberately, as for example in problems of blasting, mining, and comminution or fragmentation; in other cases, such dynamic loads might arise from accidental conditions. Regardless of the origin of the rapid loading, it is necessary to understand the mechanisms and mechanics of fracture under dynamic loading conditions in order to design suitable procedures for assessing the susceptibility to fracture. Quite apart from its repercussions in the area of structural integrity, fundamental scientific curiosity has continued to play a large role in engendering interest in dynamic fracture problems- In-depth coverage of the mechanics, experimental methods, practical applications- Summary of material response of different materials- Discussion of unresolved issues in dynamic fracture
Our site uses cookies and similar technologies to offer you a better experience. We use analytical cookies (our own and third party) to understand and improve your browsing experience, and advertising cookies (our own and third party) to send you advertisements in line with your preferences. To modify or opt-out of the use of some or all of our cookies, please go to “Manage Cookies” or view our Cookie Policy to find out more. By clicking “Accept all” you consent to the use of these cookies.