Commercial Aircraft Hydraulic Systems: Shanghai Jiao Tong University Press Aerospace Series focuses on the operational principles and design technology of aircraft hydraulic systems, including the hydraulic power supply and actuation system and describing
Commercial Aircraft Hydraulic Systems: Shanghai Jiao Tong University Press Aerospace Series focuses on the operational principles and design technology of aircraft hydraulic systems, including the hydraulic power supply and actuation system and describing new types of structures and components such as the 2H/2E structure design method and the use of electro hydrostatic actuators (EHAs). Based on the commercial aircraft hydraulic system, this is the first textbook that describes the whole lifecycle of integrated design, analysis, and assessment methods and technologies, enabling readers to tackle challenging high-pressure and high-power hydraulic system problems in university research and industrial contexts. Commercial Aircraft Hydraulic Systems is the latest in a series published by the Shanghai Jiao Tong University Press Aerospace Series that covers the latest advances in research and development in aerospace. Its scope includes theoretical studies, design methods, and real-world implementations and applications. The readership for the series is broad, reflecting the wide range of aerospace interest and application. Titles within the series include Reliability Analysis of Dynamic Systems, Wake Vortex Control, Aeroacoustics: Fundamentals and Applications in Aeropropulsion Systems, Computational Intelligence in Aerospace Engineering, and Unsteady Flow and Aeroelasticity in Turbomachinery. - Presents the first book to describe the interface between the hydraulic system and the flight control system in commercial aircraft- Focuses on the operational principles and design technology of aircraft hydraulic systems, including the hydraulic power supply and actuation system- Includes the most advanced methods and technologies of hydraulic systems- Describes the interaction between hydraulic systems and other disciplines
Our site uses cookies and similar technologies to offer you a better experience. We use analytical cookies (our own and third party) to understand and improve your browsing experience, and advertising cookies (our own and third party) to send you advertisements in line with your preferences. To modify or opt-out of the use of some or all of our cookies, please go to “Manage Cookies” or view our Cookie Policy to find out more. By clicking “Accept all” you consent to the use of these cookies.